

This project has received funding from
the European Union’s Horizon 2020
research and innovation programme
under grant agreement No 826156.

B4CM

Project title: Blockchains for Condition Monitoring

Starting date: 1st December 2018

Duration in months: 48

Call identifier: H2020-S2RJU-OC-2018

Topic: S2R-OC-IPX-03-2018

Grant agreement number: 826156

Deliverable D1.1
B4CM software framework: An implemented software framework

and supporting documentation for the monitoring of data
exchanges and attribution of associated costs in industrial RCM

systems

Due date of deliverable: 31st August 2021

Actual submission date: 31st August 2021 (Updated 13th January 2022)

Lead contractor for deliverable: University of Birmingham (UoB)

Dissemination level: Public

Revision: Final

Deliverable D1.1

B4CM software framework

Authors

Author(s) University of Birmingham (UoB)

Rahma Alzahrani

Contributors(s) Callum Jones

John Easton

Document History

Date Description

31st August 2021 Draft for approval.

13th January 2022 Updated in line with reviewer comments:

• Update to S2R logo
• Addition of new section justifying Hyperledger platform

choice with reference to other available options
• Additional of link to case study description in D2.1 and

diagram of stakeholder context for monitoring scenarios
• References added as appropriate to detailed descriptions of

case studies and need for the use of Escrow in published
papers linked to the B4CM project and D2.1

• Note that reference ontology should be used for data
descriptions, and that this will be investigated before the end
of the project

• Flowcharts updated to include specific labelling of Y/N
pathways

• Chaincode transaction model moved to separate section
• Structural use of bold headings updated to numbered sections

Disclaimer

The B4CM project team wish to make it clear that while this deliverable is an output of work
funded by the Shift2Rail Joint Undertaking (JU), the content of this document is solely
reflective of the author's views. The Shift2Rail JU is not responsible for the findings
presented within this document, or for any use that may be made of its contents.

Deliverable D1.1

B4CM software framework

Executive Summary

The aim of this deliverable is to report on the B4CM project software framework, giving
basic instructions for deployment and providing documentation enabling the usage,
extension, and maintenance of a deployed system in the context for which it was
developed. The project code has been made available via a public git repository (release
versions only), enabling users to easily access and extend the work for their needs, and can
be accessed via GitHub (https://github.com/B4CMProject/B4CMProjectSoftwareReleases).

The document begins by describing the software stack being used by the team, before
looking in detail at each of the software constructs that form the blockchain network
deployment of the framework. Finally, the framework is demonstrated in a toy industry
context based on the UK rail industry.

Deliverable D1.1

B4CM software framework

Abbreviations and Acronyms

Abbreviation / Acronym Definition

API Application Programming Interface

B4CM Blockchains for Condition Monitoring

CA Certificate Authority

DB Database

DfT Department for Transport

EU European Union

ECC Elliptic Curve Cryptography

HLF Hyperledger Fabric

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

MSP Membership Service Provider

SDK Software Development Kit

UI User Interface

UK United Kingdom

Deliverable D1.1

B4CM software framework

Table of Contents

1. Background to the B4CM Project ... 1

2. Objective / Aim of Deliverable ... 2

3. Selection of Blockchain Platforms Based on Candidate Case Studies 3

3.1 Automation and Contracts ... 5

3.2 Consensus ... 5

3.3 Identity Management and Roles .. 6

3.4 Resource Management .. 6

3.5 Platform Selection .. 6

4. System Architecture ... 7

5. High-level Description of Software Components, Operational Context and Workflow . 12

5.1 Technology Stack .. 12

5.2 Intended Operational Context .. 12

5.3 Transactional workflow and Determination of Consensus 13

6. Chaincode Transaction Model .. 15

6.1 Transaction Registration ... 16

6.2 Use of Transactions by Providers ... 17

6.3 Use of Transactions by Consumers ... 21

6.4 Use of Transactions by Automation ... 23

7. Demonstration Application .. 26

8. Conclusions ... 37

Deliverable D1.1

B4CM software framework

GA 826156 Page 1

1. Background to the B4CM Project

Over the past decade there has been a significant level of investment throughout Europe in
the digitalisation of the rail network. This includes the installation of sensors on the
infrastructure and vehicles, the deployment of next generation traffic management systems
that allow real-time management of the system, and the provision of mobile applications
for passengers and staff. Despite the wealth of new data provided by these systems, the
railways are still struggling in their aspiration to be an information-led industry due to a lack
of traceability of information usage, and the commercial barriers between stakeholders.

Blockchains are a disruptive technology that have the potential to accelerate the
development of rail as the primary medium-distance carrier within the wider multi-modal
transportation system. Directly funded by the rail industry via the EU Shift2Rail Joint
Undertaking, the B4CM project will identify key use cases for the technology within the
railways, deliver a blockchain-based testbed that enables the benefits of the technology to
be formally evaluated, and demonstrate the value of blockchains in the attribution of data
costs across organisational boundaries within the European rail sector.

The overall aim of the B4CM project is to develop and deliver a blockchain-based testbed for
the attribution of data costs across organisational boundaries, and to demonstrate the
operation of the framework and in the context of the European Rail Industry, enabling
future developers to extend the tools produced based on a known working configuration.

B4CM has the following research and training objectives:

Objective 1: To identify and develop use cases that support the application of blockchain in
the railway sector;

Objective 2: To develop an implementable blockchain framework for the attribution of data
costs in systems crossing organisational boundaries;

Objective 3: To evaluate mechanisms for the incorporation of the developed blockchain
framework into the financial processes of the European rail sector;

Objective 4: To develop a testbed, demonstrating the operation of the framework in the
context of rail sector, enabling future developers to extend the tools produced based on a
known working configuration;

Objective 5: To disseminate the findings of the project and the lessons learned to influence
best practice in innovation and technology uptake in a key and evolving field within the
European rail sector;

Objective 6: To support the development of a researcher in gaining a PhD and thus
generating a skilled specialist valuable to the European rail sector.

This document, reporting the B4CM project software framework, is written primarily in
response to Objective 2 of the B4CM project.

Deliverable D1.1

B4CM software framework

GA 826156 Page 2

2. Objective / Aim of Deliverable

As outlined in the description of work this deliverable will report on the B4CM project
software framework, giving basic instructions for deployment and providing documentation
enabling the usage, extension, and maintenance of a deployed system in the context for
which it was developed. The project code has been made available via a public git
repository, enabling users to easily access and extend the work for their needs.

Deliverable D1.1

B4CM software framework

GA 826156 Page 3

3. Selection of Blockchain Platforms Based on Candidate Case Studies

Within the B4CM project, the ultimate performance of the developed framework to
improve trust, automate a fair cost attribution process and payment, and enforce
agreements between parties, will be evaluated through the use of two industrial case
studies. In order to provide continuity with previous work in this area, the B4CM team have
based these on published work by RSSB in project T857 [6] [7] [8].The first case study will be
the Unattended Overhead Line Equipment Monitoring System (UOMS), a train-based
system monitoring infrastructure. The second will be axle journal bearings monitoring
system (RailBAM), an infrastructure-based system monitoring trains. In UOMS, equipment is
mounted on a Class 390 train and used to monitor and measure the health of the
pantograph line which belongs to the infrastructure. In the second case study, RailBAM, the
acoustic devices are mounted on the main infrastructure track and used to monitor the axle
journal bearing upon which the wheel of rolling stock is rotating. All case studies involve
cooperation between different stakeholders across the rail industry. In other words, there
are several parties in the rail industry interested in the data generated in both case studies,
such as Network Rail, Train Operating Companies (TOCs), Freight Operating Companies
(FOCs), and other train manufacturers and maintainers. In Figures Figure 1 and Figure 2, the
main stakeholders’ roles for each case study are depicted to show their responsibilities
which increase their need to enquire the generated monitoring data. These include the
Train Operating Companies (TOCs and FOCs for passengers and freight respectively in the
UK), the Rolling Stock leasing companies (ROSCOs), and the manufacturers and suppliers of
equipment to the industry. The key relationships between these entities in the overall
governance structure of the industry in Great Britain is illustrated in Figure 6. A more
detailed introduction to the B4CM case studies is provided in B4CM Deliverable 2.1. These
will then be worked up as the basis for the demonstrator to be developed under Work
Package 3.

In the remainder of this section of the document we will provide an overview of the
features of a range of blockchain platforms, and their relevance to needs of the B4CM
project.

Deliverable D1.1

B4CM software framework

GA 826156 Page 4

Figure 1: Main stakeholders in monitoring axle journal bearings.

Figure 2: Main stakeholders in the monitoring of OLE.

Deliverable D1.1

B4CM software framework

GA 826156 Page 5

Based on the permission levels they support, blockchain frameworks are primarily
categorized as public/permissionless blockchain networks or private/permissioned
blockchain networks. A public blockchain network, e.g. Bitcoin, is open to the public to join,
i.e. anonymous participants have uniform access privileges to the network ledger. In these
cases powerful consensus mechanisms must be imposed to preserve security, particularly in
terms of the integrity of data being entered into the ledger. The most popular consensus
algorithm used in public blockchains is Proof-of-Work [1]. In contrast, in private blockchain
networks, participants are known / identified by specific credentials to enable tailored
restrictions to be placed on their access to the ledger and the actions they can perform.

In the B4CM framework, there is a clear requirement that the identities of all participants in
the network must be known, thus protecting the integrity of what is essentially an industrial
system. To deliver this, the developed proof of concept will be implemented using a
blockchain network supporting the auditing and tracking or actors and processes. There are
several blockchain platforms that could be employed in implementing the proposed model.
Determining the most appropriate one has a considerable influence on the design as there
are no one-size-fits-all-platform blockchain initiatives. Therefore, a tradeoff analysis was
conducted on the most used blockchain platforms: Ethereum [1], [2], Fabric [3], Sawtooth
[4], and Iroha [5], based on the criteria listed below in Table 1.

Table 1: Comparison of functionality between Ethereum, Fabric, Sawtooth, and Iroha.

Criteria
Ethereum Hyperledger

Fabric
Hyperledger

Sawtooth
Hyperledger

Iroha

1- Supports smart contracts. ! ! ! !
2- Consensus algorithm modularity. " ! ! "
3- Built-in components for managing

identities. " ! " !

4- Supports payment in fiat currency. " ! ! !
5- Proficient in maintaining different

privacy levels between users. " ! ! !

3.1 Automation and Contracts
Process automation in the B4CM framework will be delivered by SCs implemented in Turing-
complete languages. Ethereum uses Solidity, a new programing language that provides
reasonable expressivity but is computationally expensive and to some extent limited in
implementing complex contract terms. The remaining blockchain platforms support SC
development in more advanced programming languages such as Java, Go, Rust, and C++.
The Iroha platform is focused heavily on supporting the development of mobile applications
and embedded systems alongside web applications. This platform provides a set of libraries
and prebuilt components, including predefined SCs and queries, designed to support the
interfacing of IoT-style infrastructure to the distributed ledger platform; this makes Iroha a
useful complement to the Fabric and Sawtooth platforms.

3.2 Consensus
Ethereum, as a public blockchain platform, handles the abuse of trust by imposing a proof-
of-work (PoW) consensus algorithm which is known to be rigorous but power and time
consuming due to the mining process and the need for propagation across the network. The
Fabric and Sawtooth platforms by comparision, support several consensus algorithms that

Deliverable D1.1

B4CM software framework

GA 826156 Page 6

can be changed on the fly while the network is running, making them more easily adaptable
to different environments. The use of consensus modularity (as provided by Fabric or
Sawtooth) will give the B4CM team the ability to implement a range of concensus
mechanisms within the framework to examine and measure the throughputs according to
each one. Iroha embraces its own consensus algorithm, a crash fault-tolerant consensus
called Yet Another Concensus (aka YAC). In fact, consensus protocols in private blockchain
avoid all unnecessary hurdles and complexities since reaching a total agreement on the
common truth between predefined identities will be easier and faster.

3.3 Identity Management and Roles
A feature of the Ethereum platform is that it can maintain the anonymity of nodes in the
network, enabling them to join or leave without restrictions. This does not serve our
purposes in this research however, because it is essential to identify each participant in the
network. Hyperledger Fabric provides Membership Service Provider (MSP) and Certificate
Authority (CA) services to identify the participant in an easy and manageable way. Sawtooth
does not have a CA service similar to the one in Fabric, thus the developer might need to
integrate external identity software. Iroha has an intrinsic support for identity management.

In the B4CM framework there is a requirement for the provision of varying privacy levels
between users, i.e. not all agreements and payment processes should be available for all
network users. Some users may choose to have a private agreement and keep the cost
attribution hidden from others who are not involved in that agreement. Ethereum relies on
the use of an identical role for all network participants; all transactions are available and
visible to all participants in the network. The Hyperledger platforms by comparison have a
range of mechanisms by which user roles can be assigned. In Fabric, this issue is managed by
creating a separate channel to isolate participants that need private agreements and cost
attributions, while in Sawtooth, changing the identity namespace in the transaction family
will restrict access to certain identities. In Iroha it is also possible to define access control
rules against resources on the chain.

3.4 Resource Management
Ethereum incurs fees (gas) in exchange for every SC execution and has its own native
payment currency (Ether) while the Hyperledger platforms Fabric, Sawtooth, and Iroha are
cryptocurrency-independent and payment in fiat currencies is available.

3.5 Platform Selection
All in all, a permissioned blockchain network seems to be the best choice to fulfill the design
decisions we mentioned in our framework when considering faster settlement, scalable
performance, and a more controlled environment. Based on the trade off in Table 1, our
proposal will be tested using Hyperledger Fabric as the underlying blockchain platform.

Deliverable D1.1

B4CM software framework

GA 826156 Page 7

4. System Architecture

Figure 3 depicts high-level abstract of the proposed system architecture. It consists of three
kind of main nodes which are as follows:

Organization: A set of organization nodes will build the underlying blockchain network and
the maintained network will be running at this component to provide a distributed system.
Users’ identity management, communication, and consensus process will be built on this
component within Peer-to-Peer network. Then, the constructed blockchain network will
manage the ledger among all participants, consensus algorithm, and smart contract services
to ensure consistency and traceability is handled as well.

Users: Users represent the participants who are willing to communicate with specific
organization to consume or provide data. Users will be registered, and their identities
should be authenticated and authorized before any access to the blockchain.

Client application: The communication process between users and the underling blockchain
network will be through this intermediate node.

Figure 3: High-level system architecture.

Organization Node

Each organization node in the network has several essential parts which is maintained by
the organization or interact with it as follows:

Ledger: Ledger represents the shared database among all participant nodes in the network
and it consists of two distinct, though related, databases: a world state and a blockchain.
The world state holds set of key-value pairs reflecting the current values of the ledger states
according to the validated and committed transactions in the blockchain. While the
blockchain is a transaction log which records all the changes that have leaded to the current
world state database. Therefore, the data structure in both databases are different and the
immutability is guaranteed for the blockchain database but not for the world state
database. The world state database helps in making advanced query operations more
efficient due to the small-time response needed and the ability to use CouchDB to apply
more complex queries. On the other hand, the blockchain uses LevelDB for transaction log
which only has create and read access.

Deliverable D1.1

B4CM software framework

GA 826156 Page 8

Peer: Peer is an entity maintained and monitored by the organization and plays vital role in
HLF network as response coordinator to all other components. The Peer node keeps the
ledger coordinated across the blockchain network. Connect with the channels, receive all
the transactions that are getting broadcasted on that channel. Each Peer could be one or
more of the following types:

• Committing Peer: A committing Peer is the one who upon receiving from the
ordering service, commits the block into their copy of the blockchain. This block will
contain a list of transactions to validate each transaction in the list and confirm such
transactions as either valid or invalid and then would commit them to the block. All
such transactions, irrespective of whether they are valid or invalid, are committed to
the blockchain, and this may be used for audit purposes going forward.

• Endorsing Peer: These are special type of committing Peers who apart from their
regular role, will have an additional responsibility to endorse a transaction in the
network. Any request coming from the client’s node is endorsed by such a Peer. Each
of these Peers will generally have a copy of the ledger and the installed Chaincode.
The endorsers are entrusted with the responsibility to simulate the transaction and
would generate Read / Write sets which are then sent to the requesting client. The
transaction is not committed to the ledger during such a simulation.

• Anchor Peer: Generally, a Fabric Network can spread across multiple different
organizations and hence there is a need to have Peers to communicate with these
multiple organizations. Such a privilege is not available with all the Peers in the
network but there are special Peers who only have the authority to do so and these
Peers are called Anchor Peers and they are usually defined in channels.

• Leading Peer: Like Committing Peers and Anchor Peers, there are a set of Peers
called Leading Peers and are the ones who communicate the messages from
ordering service to other Peers in the same organization. The protocol that these
Leading Peers use is Gossip and thus all the other Peers in the organization will
receives the message seamlessly. One important thing to be noted is that Leading
Peers are confined to communicate only within the organization and cannot
communicate outside an organization.

Orderer: The Orderer as the name implies will be responsible for ordering transactions into
a block. Usually, a separate ordering node does this job which along with other ordering
nodes form ordering service cluster. Based on the application design, the organization may
have its own ordering service to increase the transaction throughput that will then interact
with the ordering service.

Channel: The channel is the connection which ensure the isolation and the confidentiality of
data among the consortium participants. Each organization will be registered to one or
more channel and the users of that organization will gain the access to the channel their
organization belongs to.

Certificate authority: The CA is behind the process of issuing and administrating the
certificates which identify the identity and role of each member in the organization. By this
entity, unauthorized access is prevented, and consortium remains private.

Smart Contract: In Hyperledger Fabric the smart contract is referred to as Chaincode which
holds the business logic and coordinates the interactions between the application and the

Deliverable D1.1

B4CM software framework

GA 826156 Page 9

ledger. The Chaincode can be written in different programming languages and in our
system, we used Golang and Node.js to write and interact with the Chaincode. The
Chaincode comprises a set of functions that are designed and coordinated to achieve a
specific business logic. It is possible to have more than one Chaincode and accessing the
Chaincode will be maintained through the endorsing Peers on which the Chaincode is
installed and initiated.

API and Command Line Interface: The APIs are the gateway through which the frontend
applications will communicate with the organization in the blockchain network. The REST
API server in most cases uses two Node.js modules: the first module is used to define a
loopback connection for the blockchain, and the second module is used to set an exposure
of the available capabilities over REST. The command line interface is an administrative
alternative to the API that can be used to send transactions, invoke Chaincode, and query
Chaincode.

All the mentioned parts above are depicted in Figure 4, which shows the architecture of the
proposed Hyperledger Fabric network on which the system is built.

Figure 4: Hyperledger Fabric network architecture.

Client Application Node

This node uses the API REST server to gain access to communicate with the blockchain
network by submitting transactions. The API server will in turn processes all requests and
communicate directly with the blockchain network to invoke the appropriate Chaincode.
Therefore, authentication, authorization, and access policy need to be managed before any
transaction submission. Local authentication and authorization for each organization can
carried on, consequently, registered participants can sign transaction using their issued
private keys.

The access of any client node across the network will be granted by connecting to a Peer for
each transaction submission. Then, client node will be able to invoke the functions provided
through Chaincode, perform related transactions, and execute the proposal request and
responses related to the Orderer’s transactions. In addition, when there is usage of external
storage, client node needs to calculate the checksums stored in the ledger as well as storing
data in external storage.

Deliverable D1.1

B4CM software framework

GA 826156 Page 10

From this perspective, the system can be split as shown in Figure 5 into the following layers:

Figure 5: Logical structure of network layers.

Information Ingestion Layer (IIL): Information Ingestion Layer is the UI layer that is
responsible for ingesting the data on the other service. This layer is the entry point of the
data into the application.

Information Validation and Processing Layer (IVPL): The Information Validation layer
validates the data which it receives from the IIL. Its main task is to ensure that input
received is clean and is in the correct format. The processing layer processes the incoming
data, sanitizing the data and route it to the push services.

Push Service: Push services deal with sending the data to the blockchain nodes. It
essentially routes the data received from IVPL and then sends data to the blockchain. Push
service is using Fabric SDKs for smart contract management and transaction management to
send data to the blockchain. It is also leveraging the Fabric CA SDK for identity management.

Blockchain Nodes: It is a Hyperledger Fabric Blockchain network, which is private and
permissioned in nature. This blockchain network uses RAFT consensus which is Crash Fault-
Tolerant and is capable of handling crashes.

Deliverable D1.1

B4CM software framework

GA 826156 Page 11

Data Mart: Data Mart is the cluster of databases that are acting as off-chain DB in the whole
system. It is a cluster of MongoDB which is a document-based NoSQL database. The
database cluster is used to achieve the High Availability (HA) and to remove the single point
of failure risk.

Business Logic Layer: The business logic layer is responsible for handling the application
logic, it deals with the retrieval, processing, transforming, and managing the application
data.

Application Layer: Application Layer directly interacts with the application over the HTTP
Protocols. It uses REST APIs to interact with the web services.

Deliverable D1.1

B4CM software framework

GA 826156 Page 12

5. High-level Description of Software Components, Operational
Context and Workflow

In this section, the network deployment, workflow, Chaincode model, and transaction
models will be illustrated and discussed.

5.1 Technology Stack
The application is built on the following technology stack:

Hyperledger Fabric v2.2: The latest stable version of Hyperledger Fabric platform to the
time of writing this report.

Node.js: Cross-platform JavaScript run-time environment that executes Server-Side
JavaScript code.

Docker: Orchestration engine that performs operating-system-level virtualization. The
docker container engine will be used to run multiple containers for data storage and service
operations

Angular: A declarative, efficient, and flexible JavaScript library for building user interfaces.

MongoDB: Off-Chain Database for storing the user credentials and raw data.

The deployed stack provided in the GitHub repository runs on virtual desktop nodes each
based on Ubuntu 20.04. The server architecture in our system uses docker containers to
easily build and run the application on local machine or remote machine. At the end of
deployment each server’s docker engine will accommodate several images for Peers,
Orderers, Certificate Authorities that provide membership service, and installed Chaincode
containers. As depicted in Figure 4, the developed blockchain network's topology consists
of:

• Two Organizations
• Four Committing Peers, two for each Organization
• Two Endorsing Peers, one for each Organization
• Three Orderers, each in separate container and all will be using Raft consensus
• One dedicated Channel
• LevelDB is used for the ledger’s logs and CouchDB for the world’s state on each Peer

The complete code for the demonstration is available from GitHub along with deployment
instructions for a clean installation of Ubuntu 20.04. You can obtain the current release of
the code at any time using the command line:

git clone https://github.com/B4CMProject/B4CMProjectSoftwareReleases

The demonstration of the deployed model is discussed in detail in section 7.

5.2 Intended Operational Context
Operationally, it is of course intended that the framework should be deployed within an
appropriate operational context for the European railways. For the purposes of this study,
the team have chosen to use the current operational structure of the railways in the UK to
provide that context, although these are of course currently in flux as the industry prepares
for the introduction of Great British Railways over the next 5 years. Assuming the current
operational model, then practically speaking it is safe to assume that the setup and ongoing

Deliverable D1.1

B4CM software framework

GA 826156 Page 13

administration of the network would fall under the responsibility of Department for
Transport (DfT), that has the highest-level administrative authority in the GB railway
industry, as shown in Figure 6. DfT establishes the UK rail network's strategic directions and
collaborates with a variety of partners to conduct and fund all main projects.

Figure 6: High-level structure of the GB rail industry.

5.3 Transactional workflow and Determination of Consensus
The client nodes are considered to create and submit transactions to invoke the related
operations which the system behaviours depend on them. The transaction flow process in
Hyperledger Fabric is illustrated in the following steps that adapted from similar illustrations
in [3] and [9].

Step 1: Through the client node, a user in the member organization signs and sends
transaction request as proposal. The proposal contains the procedure of a Chaincode that
the client intends to invoke.

Step 2: The proposal will be broadcasted via the client application to all endorsing Peers
which are already defined earlier in the endorsement policy for each Chaincode.

Step 3: Each endorsing Peer will authenticate the user certificate using the MSP to verify the
sender signature before validating the transaction. Then, the transaction will be processed
and via running the Chaincode installed on each endorsing Peer.

Step 4: The result of processing the transaction will be signed by the endorsing Peer along
with the proposal response which contains a transaction approval or transaction rejection
and will be sent back to the client application.

Step 5: On receiving sufficient number of approved proposals as defined in the
endorsement policy, the client sends a transaction containing endorsed transaction

Deliverable D1.1

B4CM software framework

GA 826156 Page 14

proposal responses to the Ordering service to order and place the transaction into a block,
along with other transactions received from any clients.

Step 6: The Orderer will send the new generated blocks to the Anchor Peers of each
member organizations within the same channel.

Step 7: Once the block is acquired, the Anchor Peer will propagate it to other Peers via
gossip protocol to validate each transaction in the block following the same order to ensure
that it has been consistently endorsed by all relevant organizations. Then, the transaction is
committed and the ledger is updated accordingly. If there is detected inconsistency or
transaction failure, the transaction is retained for audit but not applied to the ledger and
their effects are discarded.

Step 8: Finally, when the transaction is committed and the ledger is updated, an event
notification is emitted.

As revealed above, the Hyperledger Fabric adopts execute-order-validate paradigm in
handling transactions. This allows parallel transactions execution and transactions recording
which enhances the efficiency when maintaining the consensus to increase the overall
throughput. When each transaction is signed by the private key of the user who invokes
that transaction, part of the endorsement process of the endorsing peers is to verify this
signature using the public key of the issuer before considering the transaction as valid one.
This process will enforce an end-to-end security between the user and the blockchain to
insure data attribution to the correct stakeholder.

Deliverable D1.1

B4CM software framework

GA 826156 Page 15

6. Chaincode Transaction Model

The proposed Chaincode that holds the business logic contains assets, attributes and set of
functions to manage the different transactions. For the assets, models are created with all
the needed attributes to describe each asset as depicted in Figure 7. The project team note
that several of these fields could be populated via controlled vocabularies, and this will be
investigate later in the B4CM project. Specialised ontologies for rail have been presented in
the literature and would prove highly useful in this context, examples include the RaCoOn
ontology [12] developed previously by members of the project team, and work by the
Shift2Rail funded LINX4RAIL project.

The relations between the assets are depicted in Figure 8 which shows also how the link to
the external storage is created by including the filename inside the DataHash record along
with the digested hash value of the raw data. The proposed accounting model and the need
for the use of escrow to overcome issues around fraudulent transactions not otherwise
managed in traditional payment models are discussed in detail in [10] (authored by the
project team) and are also presented in B4CM deliverable 2.1. Examples of fraudulent
transactions include the introduction of deliberate delays into the delivery of data to
consumers by producers post-agreement, the delivery of data not matching the original
advertisement,

Figure 7: Entities as used by the chaincode model.

Figure 8: Relationships between chaincode entities and how it is linked to the external storage.

Deliverable D1.1

B4CM software framework

GA 826156 Page 16

Most of the transactions will be initiated via the browser by sending HTTP/HTTPS request to
the web server. Then, the browser sends the requests in the JSON format, and the web
server routes all those requests to the application server. The application server is running
service which is built on nodeJS and is responsible for processing and sending those
requests to Hyperledger fabric blockchain with the help of Hyperledger Fabric SDK and the
connection profiles. An Event emitter is put in place which is receiving the events emitted by
the block and forwarding those events in the form of JSON to the application server. The
application server is receiving those events and then persisting those events in the off-chain
storage for logging purposes and to the browser to show requests responses. The
application server is also interacting with the off-chain DB to access the user credentials and
file storage and retrieval. Figure 9 shows the general flow of requests processing.

Figure 9: Transactional flow through the system.

Since the storage of data at rest is the responsibility of the provider, within the B4CM
framework we are proposing that shared data is passed to the shared storage in an
unencrypted state. In [11] the authors have provided a framework for the sharing of
industrial data on public clouds where that data is encrypted. This would be a
recommended evolution of future releases of the platform, and the work is structured such
that it can be easily adopted by any blockchain platform useing Elliptic Curve Cryptography
(ECC) for the digitally signing of transactions (including the Fabric platform on which B4CM
is based).

6.1 Transaction Registration
Users should register and obtain private / public pair to gain access to the system services.
Many restrictions according to each organization policies could be added at this level to
restrict unauthorized users to register. One way is to dedicate the registration process to
the organization’s admin to maintain a list of eligible users which could be modified
periodically when new users are enrolling to the organization or leaving the organization.
The admin in each organization will be responsible of communicating with providers and
consumers, investigating their identities, and issuing their certificates and keys.

Deliverable D1.1

B4CM software framework

GA 826156 Page 17

For testing purposes, a sign-up form is implemented to register the users and to issue the
key pair for each user but in future, for production phase, this process will be assigned to
the admin identity in each organization.

6.2 Use of Transactions by Providers
The provider, through his interface, will be able to perform the following transactions as
shown in Figure 10 with the same numbering order:

Figure 10: Provider-side transactional flow.

Step 1: Construct Data Offer is an essential transaction that simulates advertising data offers
which the provider has to the consortium network. The provider will initiate this process by
setting all the needed attributes and then pushing the offer to the blockchain using the
Chaincode function InsertDataOffer.

Step 2: Update data offer will enable the provider to update any offer attribute at any time
without affecting the ongoing agreements of the same offer. The updated attributes will
take effects with new requests. The offer record will be updated in the blockchain through
the Chaincode function UpdateDataOffer.

Step 3: Retrieve offers is the process by which the provider will access all his offers. The
function GetAllOffers in the Chaincode will process this transaction.

Step 4: New data hash process simulates uploading the raw data to the external storage
(MongoDB) and uploading the hash value of the same data to the blockchain accordingly.
This will be accomplished by adding the new hash value to all DataAgreement records that
are not expired and not revoked for the same offer_id. In addition, the new hash value will
be appended to the OfferDataHash record which hold all the hash values of specific
DataOffer record, see Figure 11.

Deliverable D1.1

B4CM software framework

GA 826156 Page 18

Figure 11: Flowchart illustrating the insertion of new hashes.

Step 5: Retrieving the hash values of specific offer will be accomplished by querying the
OfferDataHash records and retrieving record that matches the offer_id and which contains
all uploaded hashes for the same offer.

Step 6: Retrieving requests will show all the requests that has been sent from consumers to
the provider and stored in OfferRequest records, then, the provider will be able to react
against these requests.

Deliverable D1.1

B4CM software framework

GA 826156 Page 19

Step 7: React to Requests simulates the case of capturing the provider responsiveness of the
received requests. As a result, this will trigger the transactions of updating the Escrow and
OfferRequest records accordingly based on the provided details and payments. In Figure 12,
the logical flow of accepting and rejecting request transaction as implemented in the
Chaincode function AcceptOfferRequest is illustrated.

Figure 12: Flowchart illustrating the response to offers.

Step 8: Retrieve Agreements enables the provider to explore all his settled agreements and
this process will be accomplished through querying DataAgreement records in the
Chaincode function GetAllAgreements.

Step 9: Revoke specific agreement will lead to releasing the Escrow record and generating
the cost attribution of the agreement, see Figure 13. Accordingly, DataAgreement, Escrow,
and Costs records will be updated and appended to the blockchain in the Chaincode
function RevokeAgreement.

Deliverable D1.1

B4CM software framework

GA 826156 Page 20

Figure 13: Flowchart illustrating the revocation of an agreement.

Step 10: Retrieve Escrows enables the provider to see all active escrows through querying
Escrow records in the Chaincode function GetAllEscrow.

Deliverable D1.1

B4CM software framework

GA 826156 Page 21

Step 11: Retrieve costs showing the costs distribution based on the released escrows
through querying Costs records in the Chaincode function GetTotalCost.

Figure 14: Consumer-side transactional flow.

6.3 Use of Transactions by Consumers
The consumer, through his interface, will be able to perform the following transactions as
shown in Figure 14 with the same numbering order:

Step 1: Retrieve all Existing offers will send a query that will be processed by retrieving all
the offers from the world state database by the Chaincode function GetAllOffers. The result
of this query will list all available offers in the blockchain and the response will be reflected
to the consumers portal and each consumer has the ability then to request any available
offer.

Step 2: Send Offer Request is representing the first step in building an agreement by
sending a request to the provider in which the consumer specifies the duration of the
agreement and place the data price and the deposit in Escrow. In the Chaincode, the
function CreateOfferRequest will use the sent attribute offer_id to retrieve the offer details
and check its existence before generating new Escrow and new OfferRequest records then
append them to the blockchain (see Figure 15).

Deliverable D1.1

B4CM software framework

GA 826156 Page 22

Figure 15: Flowchart illustrating the generation of an offer.

Step 3: Retrieve the hash value array of each agreement which is updated with every new
hash entry when the provider uploads new data to the system as illustrated above in Error!
Reference source not found.. The function GetDataHashByAgreementID in chaincode will
access the hashes IDs stored in OfferDataHashID attribute of DataAgreement record.

Step 4: Retrieve all agreements the consumer has by applying a query on DataAgreement
records in the Chaincode function GetAllAgreements.

Step 5: Revoke agreement transaction will terminate the agreement before reaching the
agreed end date. the escrow will be released, and the final costs attribution will be
calculated in similar way to the revoking transaction discussed in the provider's
transactions. see Figure 13.

Step 6: Retrieve escrows will show the escrows of all agreements by applying a query on
Escrow records in the Chaincode function GetAllEscrow.

Step 7: Retrieve all Costs will be showing the costs distribution based on the released
escrows through querying Costs records in the Chaincode function GetTotalCost.

Deliverable D1.1

B4CM software framework

GA 826156 Page 23

6.4 Use of Transactions by Automation
As noticed above there are some dependencies in transactions invocations where some
transactions are invoked based on the responses of other transactions invocation or based
on external events. The following transactions are invoked by other transactions or
scheduled to be invoked at specified date and time.

Step 1: Create Escrow transaction is invoked twice. The first time is when the consumer
sends a request to the provider to hold his payment and invokes the function
CreateOfferRequest in Chaincode as shown in Figure 15. The second time is when the
provider responds to the request by invoking the function AcceptOfferRequest to update the
Escrow record with the provider deposit in the case of acceptance or to set his deposit to 0
in case of rejection, see Figure 12.

Step 2: Create Agreement as shown in Figure 12, this transaction will be invoked only when
the provider sends an Accept response to the AcceptOfferRequest function.

Step 3: Agreement expiration transaction is implemented as scheduled job that emits an
expiration event when the end date is due to invoke the function ReleaseEscrow in the
Chaincode.

Step 4: Release Escrow as discussed before will be triggered automatically when the
agreement’s end date is due or when the agreement is revoked by provider or consumer at
any time. Releasing the escrow will evaluate the presence of latency or falsified data claims
before calling the InsertCost function as illustrated in Figure 17.

Step 5: Create costs transaction will be invoked when the escrow is released to find the cost
attribution by invoking InsertCosts function. The payments to provider and consumer will be
calculated as illustrated in Figure 18 and Figure 16.

Deliverable D1.1

B4CM software framework

GA 826156 Page 24

Figure 16: Flowchart illustrating cost calculation and the impact of latency.

Deliverable D1.1

B4CM software framework

GA 826156 Page 25

Figure 17: Release of Escrow.

Figure 18: Attribution of costs.

Deliverable D1.1

B4CM software framework

GA 826156 Page 26

7. Demonstration Application

As a demonstration of the functionality of the proposed application, a skeleton web app has
been developed using Angular 12.0.1 to interact with the written REST APIs. The Chaincode
is written in Golang and use the standard Fabric SDKs (Fabric-Network and Fabric-ca). The
implementation of Chaincode, APIs, and simulation are available as open source in GitHub
at https://github.com/B4CMProject/B4CMProjectSoftwareReleases with documentation
available in the “Documents” subfolder. As a brief introductory guide to the structure of the
code, some notes are included below.

The top-level structure of the project is broken down into three main sections, “api-server”,
“Front-end”, and “network”, with the latter being the most important of these as it contains
the basis for the local blockchain deployment used by the demonstration. “Front-end”
contains the angular interfaces shown in the figures throughout the remainder of this
section, while “api-server” provides the javascript APIs used for communication between
the interface components and chaincode assets.

Under the "network" channels are then used to implement peer organisations and orderer
organisations, with 3 of each being deployed for the demonstration in a process scripted
using YAML files. Each of the peer organisations within the network is also provided with an
instance of a CouchDB database deployed (again via the YAML script) using docker. The
overall structure is shown in Figure 19.

Figure 19: Structure of the code in the project repository.

Deliverable D1.1

B4CM software framework

GA 826156 Page 27

Process 1 – Provider and Consumer Enrolment: In production deployment, this process
should be under the responsibilities of the organization admin as mentioned before in
Section 4. For testing purpose, this process is simulated by a sign-up form to receive the
enrolment requests. Then, enrolled participants will login to the application to perform all
processes through the Login form as shown in Figure 20.

Figure 20: Enrolment process.

In our simulation, providers and consumers might belong to Org1 or Org2 to trade data
within the same organization or with different organizations in the same network. The
distribution of providers and consumers among organizations is flexible and could be
redesigned depending on the application domain in which this framework is integrated.

For testing, we have created three different providers: Siemens, and Virgin trains that are
members in Org1 while Network Rail is a member in Org2. Created consumers are: South
West Trains, First Great Western, Network Rail, and Serco and all are members in Org2.

Deliverable D1.1

B4CM software framework

GA 826156 Page 28

Process 2 – Creation of Data Offer: This process simulates advertising data offers to the
network and the provider will initiate this process by setting all the needed attributes and
pushing offers to the blockchain. As shown in Figure 21 (b) and (c), providers (e.g., Siemens)
will generate and update offers through their portal and each consumer (e.g., First Great
Western), in Figure 21 (a) has the ability to see all offers and request any available one.

Figure 21: Creation of data offers from available sets.

Deliverable D1.1

B4CM software framework

GA 826156 Page 29

Process 3 – Upload of Data: This process simulates uploading the raw data to the external
storage and uploading the hash value of the same data to the blockchain. As shown in
Figure 22, when the provider (e.g. Network Rail) uploads the data, the hash value will be
generated consequently. Therefore, uploading the same data will generate the same hash
value which will be taken as evidence when consumers raise a claim in future. The
consumer on the other side (e.g., Serco), will be able to access only the raw data and hashes
related to specific agreement as illustrated in Figure 22 (d).

Figure 22: Upload of data & assignment of hashes.

Deliverable D1.1

B4CM software framework

GA 826156 Page 30

Process 4 – Requesting Data: This process simulates the case of sending a request to the
provider to start data trading and will be initiated by consumer. In Figure 23 (a) and (b),
Serco and First Great Western as consumers are sending request to Network Rail and
Siemens respectively after specifying the duration and doing their part of payments.

Figure 23: Issue of data requests to providers.

Deliverable D1.1

B4CM software framework

GA 826156 Page 31

Process 5 – Issuing of Response to Data Request: This process simulates the case of
responding to the requests received from consumers. In Figure 24, Siemens and Network
Rail are maintaining the received requests by deciding which one will be accepted or
rejected based on the provided details and payments.

Figure 24: Management of requests.

Deliverable D1.1

B4CM software framework

GA 826156 Page 32

Process 6 – Creating Agreements and Entering Escrow: This process simulates the case of
generating the agreement and the escrow records automatically. When the request is
accepted by provider, the escrow will be locked holding all payments and the agreement
will be activated between provider and consumer. In Figure 25 (a) and (b), the agreement
and escrow records are generated after Siemens had accepted the requests that sent by
First Great Western. While Figure 25 (c) and (d), shows agreements and escrows records
that generated on the Siemens side right after maintaining all requests received from First
Great Western and South Western Trains.

Figure 25: Generation of agreement and establishing Escrow.

Deliverable D1.1

B4CM software framework

GA 826156 Page 33

Process 7 – Cost attribution: Each case in the cost attribution algorithm (Figure 18) is
simulated and tested as follows:

• Agreement is expired with no conflicts: When the agreement is due, it will be
flagged as expired, and the relevant escrow will be released to produce a cost
distribution record. Figure 26 (a)-(c), shows how this is presented on the provider’s
side (e.g., Siemens), while Figure 26 (d)- (f) shows the consumer’s side (e.g., First
Great Western).

Figure 26: Contribution to costs on expiration of agreement.

Deliverable D1.1

B4CM software framework

GA 826156 Page 34

• Agreement is revoked by the provider: In this case, the agreement will be flagged as
revoked as shown in Figure 27 (a) and the provider will lose his deposit when the
cost distribution record is generated as illustrated in Figure 27 (b). The consumer we
get his deposit back in addition to compensating him by adding the provider’s
deposit to the refund.

Figure 27: Contribution to costs on revocation by provider.

Deliverable D1.1

B4CM software framework

GA 826156 Page 35

• Agreement is revoked by consumer due to latency or falsified data: In Figure 28 (a),
the two agreements that Serco has with Network Rail have been revoked by the
Serco. On the Network Rail side, a latency in appending the hash values and some
redundancy was conducted to test this case as illustrated in Figure 28 (b) and (c). The
result as presented in Figure 28 (d) shows that the consumer will be compensated
with the provider’s deposit to the refund along with his own deposit.

Figure 28: Consumer revocation of an agreement with a claim.

Deliverable D1.1

B4CM software framework

GA 826156 Page 36

• Agreement is revoked by the consumer and no latency or falsified data is proven:
In this case, the cost distribution will be calculated by adding the consumer’s deposit
to the provider’s reimbursement as illustrated in Figure 29 (a) and (b).

Figure 29: Unsubstantiated consumer revocation.

Deliverable D1.1

B4CM software framework

GA 826156 Page 37

8. Conclusions

This document has presented an overview of the tooling, design rationale, and intended
usage of the software framework being developed under the B4CM project. While the team
expect that this will be substantively fleshed-out as we develop the specific use cases over
the coming months, this overview was intended to provide good visibility of the work to
date and the planned direction of travel with respect to the implementation. The project
source code repository is publicly accessible, and will be updated over time as improved
releases become available; the current content, although essentially only an alpha release,
has been demonstrated in a toy industry context throughout Section 7.

Deliverable D1.1

B4CM software framework

GA 826156 Page 38

References

[1] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,” Technical
report., [Online]. Available: https://gavwood.com/paper.pdf.

[2] V. Buterin, “Ethereum white-paper.,” [Online]. Available:
https://ethereum.org/en/whitepaper/.

[3] E. Androulaki et al., “Hyperledger Fabric: A Distributed Operating System for
Permissioned Blockchains,” New York, NY, USA, 2018. doi: 10.1145/3190508.3190538

[4] K. Olson et al., “Sawtooth: An introduction – White paper.,” [Online]. Available:
https://www. hyperledger.org/wp-
content/uploads/2018/01/Hyperledger_Sawtooth_WhitePaper.pdf.

[5] Hyperledger Iroha Community, “Iroha handbook: Installation, getting started, API,
guides, and troubleshooting.”, [Online]. Available:
https://iroha.readthedocs.io/_/downloads/en/1.1.3/pdf/.

[6] RSSB Research, “Detailed overview of selected RCM areas - Monitoring of overhead line
integrity (T857 Report),” T857-4, 2012. [Online]. Available:
https://www.sparkrail.org/Lists/Records/DispForm.aspx?ID=9919

[7] RSSB Research, “Detailed overview of selected RCM areas - Monitoring of pantograph
integrity (T857 Report),” T857-3, 2012. [Online]. Available:
https://www.sparkrail.org/Lists/Records/DispForm.aspx?ID=9918

[8] RSSB Research, “Detailed overview of selected RCM areas - Monitoring of axle journal
bearings (T857 Report),” T857-01, 2012. [Online]. Available:
https://www.sparkrail.org/Lists/Records/DispForm.aspx?ID=9916

[9] Hyperledger Fabric documentation (2020). [Online]. Available:
https://buildmedia.readthedocs.org/media/pdf/hyperledger-Fabric/latest/hyperledger-
Fabric.pdf

[10] R. A. Alzahrani, S. J. Herko and J. M. Easton, "Blockchain Application in Remote
Condition Monitoring," 2020 IEEE International Conference on Big Data (Big Data),
2020, pp. 2385-2394, doi: 10.1109/BigData50022.2020.9377895.

[11] J. D. Preece and J. M. Easton, "Towards Encrypting Industrial Data on Public Distributed
Networks," 2018 IEEE International Conference on Big Data (Big Data), 2018, pp. 4540-
4544, doi: 10.1109/BigData.2018.8622246.

[12] J. Tutcher, J. Easton, and C. Roberts (2017). “Enabling Data Integration in the Rail
Industry Using RDF and OWL: the RaCoOn Ontology.” ASCE-ASME Journal of Risk and
Uncertainty in Engineering Systems, Part A: Civil Engineering, 3(2).
https://doi.org/10.1061/AJRUA6.0000859

